Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 16

Details

Autor(en) / Beteiligte
Titel
Learning how to find targets in the micro-world: the case of intermittent active Brownian particles
Ist Teil von
  • Soft matter, 2024-02, Vol.2 (9), p.28-216
Ort / Verlag
England: Royal Society of Chemistry
Erscheinungsjahr
2024
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Finding the best strategy to minimize the time needed to find a given target is a crucial task both in nature and in reaching decisive technological advances. By considering learning agents able to switch their dynamics between standard and active Brownian motion, here we focus on developing effective target-search behavioral policies for microswimmers navigating a homogeneous environment and searching for targets of unknown position. We exploit projective simulation, a reinforcement learning algorithm, to acquire an efficient stochastic policy represented by the probability of switching the phase, i.e. the navigation mode, in response to the type and the duration of the current phase. Our findings reveal that the target-search efficiency increases with the particle's self-propulsion during the active phase and that, while the optimal duration of the passive case decreases monotonically with the activity, the optimal duration of the active phase displays a non-monotonic behavior. Microswimmers able to switch their dynamics between standard and active Brownian motion can learn how to optimize their odds of finding unknown targets by tuning the probability of switching from the active to the passive phase and vice versa .
Sprache
Englisch
Identifikatoren
ISSN: 1744-683X
eISSN: 1744-6848
DOI: 10.1039/d3sm01680c
Titel-ID: cdi_rsc_primary_d3sm01680c

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX