Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Enhanced capacitive performance of cathodically reduced titania nanotubes pulsed deposited with MnO as supercapacitor electrode
Ist Teil von
RSC advances, 2021-08, Vol.11 (43), p.267-2679
Erscheinungsjahr
2021
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
A facile and simple pulse electrodeposition method was employed to deposit Mn
2
O
3
nanoparticles on cathodically reduced titania nanotubes (R-TNTs) at different deposition time in the range of 3-15 min to investigate the influence of mass loading of Mn
2
O
3
on the electrochemical performance of Mn
2
O
3
/R-TNTs nanocomposite for supercapacitor application. Mn
2
O
3
nanoparticles were deposited on circumference of R-TNTs as well as in the nanotubes as revealed by FESEM images for all the deposited time. XPS result confirmed the presence of MnO
2
(Mn
4+
) and MnO (Mn
2+
) on the Mn
2
O
3
/R-TNTs composite which provide pseudocapacitive behaviour for the electrode. Mass loading of Mn
2
O
3
increased linearly with deposition time as confirmed by EDX analysis. The sample deposited for 12 min exhibits the highest areal capacitance of 51 mF cm
−2
(which is 22 times enhancement over R-TNTs) at a current density of 0.1 mA cm
−2
and specific capacitance of 325 F g
−1
at 6 A g
−1
. The sample also show a high-rate capability by retaining 80% of its capacitance even at higher current density of 30 A g
−1
. Interestingly, it retained 98% of the capacitance over 5000 charge discharge cycles at 10 A g
−1
after initial drop to 95% at 200th cycles suggesting an excellent long-term chemical stability. A considerably low equivalent series resistance (ESR) and charge transfer resistance (
R
ct
) of 9.6 Ω and 0.4 Ω respectively was deduced from electrochemical impedance spectroscopy (EIS) analysis indicating good conductivity and improved charge transfer efficiency of Mn
2
O
3
/R-TNTs nanocomposite.
The mass loading of Mn
2
O
3
by pulse electrodeposition (PED) onto reduced titania nanotubes (R-TNTs) greatly influences the electrochemical performance of the composite.
Sprache
–
Identifikatoren
eISSN: 2046-2069
DOI: 10.1039/d1ra00564b
Titel-ID: cdi_rsc_primary_d1ra00564b
Format
–
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von bX