Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 365
Journal of analytical atomic spectrometry, 2018-07, Vol.33 (7), p.1184-1195
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
An LIBS quantitative analysis method for alloy steel at high temperature based on transfer learning
Ist Teil von
  • Journal of analytical atomic spectrometry, 2018-07, Vol.33 (7), p.1184-1195
Ort / Verlag
London: Royal Society of Chemistry
Erscheinungsjahr
2018
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The analysis accuracy of laser-induced breakdown spectroscopy (LIBS) in high temperature applications will decrease when certified standard samples used for building calibration curves are insufficient. A novel LIBS quantitative method based on transfer learning is proposed, in which information on the spectra at room temperature is transferred to the spectra at high temperature in order to assist in building a better regression model. An iterative weight adjusting scheme is used for different samples in model training and the concept of ensemble learning is involved when the results of testing samples are predicted. Experiments on certified alloy steel standard samples were conducted to analyze Cr concentrations. The calibration dataset consisted of 15 standard samples at room temperature and 4 standard samples at high temperature. Another 3 samples at high temperature were used for testing. The results showed that the average absolute and relative errors of 3 testing samples were reduced by 1.8% and 20.58%, respectively. The proposed method provides a feasible way for LIBS analysis of samples at high temperature with lower cost and enhances the potentiality of LIBS in online industrial measurement in high temperature production processes, such as iron and steel smelting. Information learnt from spectra at room temperature is transferred to assist in building a better regression model at high temperature.
Sprache
Englisch
Identifikatoren
ISSN: 0267-9477
eISSN: 1364-5544
DOI: 10.1039/c8ja00069g
Titel-ID: cdi_rsc_primary_c8ja00069g

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX