Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 5122

Details

Autor(en) / Beteiligte
Titel
Synthesis of bee venom loaded chitosan nanoparticles for anti-MERS-COV and multi-drug resistance bacteria
Ist Teil von
  • International journal of biological macromolecules, 2023-01, Vol.224, p.871-880
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2023
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • This study aims to fully exploit the natural compound; bee venom (BV) as a substance that can kill and inhibit the growth of microbes and viruses. For this target, BV was loaded onto a safe, natural, and economically inexpensive polymer; chitosan (Ch) in its nano-size form prepared using ionic gelation method in the presence of chemical crosslinking agent (sodium tripolyphosphate; TPP). The findings illustrated that chitosan nanoparticles (ChNPs) were prepared thru this method and exhibited spherical shape and average hydrodynamic size of 202 nm with a polydispersity index (PDI = 0.44). However, the size was increased to 221 nm with PDI (0.37) when chitosan nanoparticles were loaded with BV (ChNC). In addition, the particles of BV appeared as a core and chitosan nanoparticles as a shell implying the successful preparation of nanocomposite (ChNC). Encapsulation of BV into ChNPs with significantly small size distribution and good stability that protect these formed nanocomposites from agglomeration. The cytopathic effect (CPE) inhibition assay was used to identify potential antivirals for Middle East respiratory syndrome coronavirus (MERS-CoV). The response of the dose study was designed to influence the range of effectiveness for the chosen antiviral, i.e., the 50 % inhibitory concentration (IC50), as well as the range of cytotoxicity (CC50). However, our results indicated that crude BV had mild anti-MERS-COV with selective index (SI = 4.6), followed by ChNPs that exhibited moderate anti-MERS-COV with SI = 8.6. Meanwhile. The nanocomposite of ChNC displayed a promising anti-MERS-COV with SI = 12.1. Additionally, the synthesized nanocomposite (ChNC) had greater antimicrobial activity against both Gram-positive and Gram-negative bacteria when compared with ChNPs, BV or the utilized model drug. •Bee venom (BV) loaded chitosan nanoparticles (ChNPs) were prepared and fully characterized.•The findings illustrated that BV appeared as a core and ChNPs as a shell.•BV loaded ChNPs (ChNC) displayed anti-MERS-COV with SI = 12.1.•ChNC exhibited greater antimicrobial activity against different pathogenic species.
Sprache
Englisch
Identifikatoren
ISSN: 0141-8130
eISSN: 1879-0003
DOI: 10.1016/j.ijbiomac.2022.10.173
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9595425

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX