Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 2774
Journal of machine learning research, 2021, Vol.22
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Inference for the Case Probability in High-dimensional Logistic Regression
Ist Teil von
  • Journal of machine learning research, 2021, Vol.22
Ort / Verlag
United States
Erscheinungsjahr
2021
Quelle
ACM Digital Library
Beschreibungen/Notizen
  • Labeling patients in electronic health records with respect to their statuses of having a disease or condition, i.e. case or control statuses, has increasingly relied on prediction models using high-dimensional variables derived from structured and unstructured electronic health record data. A major hurdle currently is a lack of valid statistical inference methods for the case probability. In this paper, considering high-dimensional sparse logistic regression models for prediction, we propose a novel bias-corrected estimator for the case probability through the development of linearization and variance enhancement techniques. We establish asymptotic normality of the proposed estimator for any loading vector in high dimensions. We construct a confidence interval for the case probability and propose a hypothesis testing procedure for patient case-control labelling. We demonstrate the proposed method via extensive simulation studies and application to real-world electronic health record data.
Sprache
Englisch
Identifikatoren
ISSN: 1532-4435
eISSN: 1533-7928
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9354733
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX