Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 1030

Details

Autor(en) / Beteiligte
Titel
Tuning Polymer Hydrophilicity to Regulate Gel Mechanics and Encapsulated Cell Morphology
Ist Teil von
  • Advanced healthcare materials, 2022-07, Vol.11 (13), p.e2200011-n/a
Ort / Verlag
Germany: Wiley Subscription Services, Inc
Erscheinungsjahr
2022
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • Mechanically tunable hydrogels are attractive platforms for 3D cell culture, as hydrogel stiffness plays an important role in cell behavior. Traditionally, hydrogel stiffness has been controlled through altering either the polymer concentration or the stoichiometry between crosslinker reactive groups. Here, an alternative strategy based upon tuning the hydrophilicity of an elastin‐like protein (ELP) is presented. ELPs undergo a phase transition that leads to protein aggregation at increasing temperatures. It is hypothesized that increasing this transition temperature through bioconjugation with azide‐containing molecules of increasing hydrophilicity will allow direct control of the resulting gel stiffness by making the crosslinking groups more accessible. These azide‐modified ELPs are crosslinked into hydrogels with bicyclononyne‐modified hyaluronic acid (HA‐BCN) using bioorthogonal, click chemistry, resulting in hydrogels with tunable storage moduli (100–1000 Pa). Human mesenchymal stromal cells (hMSCs), human umbilical vein endothelial cells (HUVECs), and human neural progenitor cells (hNPCs) are all observed to alter their cell morphology when encapsulated within hydrogels of varying stiffness. Taken together, the use of protein hydrophilicity as a lever to tune hydrogel mechanical properties is demonstrated. These hydrogels have tunable moduli over a stiffness range relevant to soft tissues, support the viability of encapsulated cells, and modify cell spreading as a consequence of gel stiffness. Matrix stiffness is a critical cue that affects cell phenotype and hence is an important variable in biomaterials design. A novel strategy to control the stiffness of protein‐engineered biomaterials by tuning protein hydrophilicity is demonstrated. This strategy allows synthesis of gels with storage moduli ranging from 100–1000 Pa, resulting in variable cell spreading for a variety of cell types.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX