Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 106

Details

Autor(en) / Beteiligte
Titel
A LAG FUNCTIONAL LINEAR MODEL FOR PREDICTION OF MAGNETIZATION TRANSFER RATIO IN MULTIPLE SCLEROSIS LESIONS
Ist Teil von
  • The annals of applied statistics, 2016-12, Vol.10 (4), p.2325-2348
Ort / Verlag
Institute of Mathematical Statistics
Erscheinungsjahr
2016
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • We propose a lag functional linear model to predict a response using multiple functional predictors observed at discrete grids with noise. Two procedures are proposed to estimate the regression parameter functions: (1) an approach that ensures smoothness for each value of time using generalized cross-validation; and (2) a global smoothing approach using a restricted maximum likelihood framework. Numerical studies are presented to analyze predictive accuracy in many realistic scenarios. The methods are employed to estimate a magnetic resonance imaging (MRI)-based measure of tissue damage (the magnetization transfer ratio, or MTR) in multiple sclerosis (MS) lesions, a disease that causes damage to the myelin sheaths around axons in the central nervous system. Our method of estimation of MTR within lesions is useful retrospectively in research applications where MTR was not acquired, as well as in clinical practice settings where acquiring MTR is not currently part of the standard of care. The model facilitates the use of commonly acquired imaging modalities to estimate MTR within lesions, and outperforms cross-sectional models that do not account for temporal patterns of lesion development and repair.
Sprache
Englisch
Identifikatoren
ISSN: 1932-6157
eISSN: 1941-7330
DOI: 10.1214/16-AOAS981
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9252322

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX