Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Introduction
Despite strong evidence linking amyloid beta (Aβ) to Alzheimer's disease, most clinical trials have shown no clinical efficacy for reasons that remain unclear. To understand why, we developed a quantitative systems pharmacology (QSP) model for seven therapeutics: aducanumab, crenezumab, solanezumab, bapineuzumab, elenbecestat, verubecestat, and semagacestat.
Methods
Ordinary differential equations were used to model the production, transport, and aggregation of Aβ; pharmacology of the drugs; and their impact on plaque.
Results
The calibrated model predicts that endogenous plaque turnover is slow, with an estimated half‐life of 2.75 years. This is likely why beta‐secretase inhibitors have a smaller effect on plaque reduction. Of the mechanisms tested, the model predicts binding to plaque and inducing antibody‐dependent cellular phagocytosis is the best approach for plaque reduction.
Discussion
A QSP model can provide novel insights to clinical results. Our model explains the results of clinical trials and provides guidance for future therapeutic development.