Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Predicting the Unknown and the Unknowable. Are Anthropometric Measures and Fitness Profile Associated with the Outcome of a Simulated CrossFit ® Competition?
Ist Teil von
International journal of environmental research and public health, 2021-04, Vol.18 (7), p.3692
Ort / Verlag
Switzerland: MDPI AG
Erscheinungsjahr
2021
Quelle
MEDLINE
Beschreibungen/Notizen
The main objective of this research was to find associations between the outcome of a simulated CrossFit
competition, anthropometric measures, and standardized fitness tests. Ten experienced male CrossFit
athletes (age 28.8 ± 3.5 years; height 175 ± 10.0 cm; weight 80.3 ± 12.5 kg) participated in a simulated CrossFit
competition with three benchmark workouts ("Fran", "Isabel", and "Kelly") and underwent fitness tests. Participants were tested for anthropometric measures, sit and reach, squat jump (SJ), countermovement jump (CMJ), and Reactive Strength Index (RSI), and the load (LOAD) corresponding to the highest mean power value (POWER) in the snatch, bench press, and back squat exercises was determined using incremental tests. A bivariate correlation test and k-means cluster analysis to group individuals as either high-performance (HI) or low performance (LO) via Principal Component Analysis (PCA) were carried out. Pearson's correlation coefficient two-tailed test showed that the only variable correlated with the final score was the snatch LOAD (
< 0.05). Six performance variables (SJ, CMJ, RSI, snatch LOAD, bench press LOAD, and back squat LOAD) explained 74.72% of the variance in a k = 2 means cluster model. When CrossFit
performance groups HI and LO were compared to each other,
-test revealed no difference at a
≤ 0.05 level. Snatch maximum power LOAD and the combination of six physical fitness tests partially explained the outcome of a simulated CrossFit competition. Coaches and practitioners can use these findings to achieve a better fit of the practices and workouts designed for their athletes.