Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Serum proteomic analysis of novel predictive serum proteins for neurological prognosis following cardiac arrest
Ist Teil von
Journal of cellular and molecular medicine, 2021-01, Vol.25 (2), p.1290-1298
Ort / Verlag
England: John Wiley & Sons, Inc
Erscheinungsjahr
2021
Quelle
Wiley Online Library - AutoHoldings Journals
Beschreibungen/Notizen
Early prognostication of neurological outcome in comatose patients after cardiac arrest (CA) is vital for clinicians when assessing the survival time of sufferers and formulating appropriate treatment strategies to avoid the withdrawal of life‐sustaining treatment (WLST) from patients. However, there is still a lack of sensitive and specific serum biomarkers for early and accurate identification of these patients. Using an isobaric tag for relative and absolute quantitation (iTRAQ)‐based proteomic approach, we discovered 55 differentially expressed proteins, with 39 up‐regulated secreted serum proteins and 16 down‐regulated secreted serum proteins between three comatose CA survivors with good versus poor neurological recovery. Then, four proteins were selected and were validated via an enzyme‐linked immunosorbent assay (ELISA) approach in a larger‐scale sample containing 32 good neurological outcome patients and 46 poor neurological outcome patients, and it was confirmed that serum angiotensinogen (AGT) and alpha‐1‐antitrypsin (SERPINA1) were associated with neurological function and prognosis in CA survivors. A prognostic risk score was developed and calculated using a linear and logistic regression model based on a combination of AGT, SERPINA1 and neuron‐specific enolase (NSE) with an area under the curve of 0.865 (P < .001), and the prognostic risk score was positively correlated with the CPC value (R = 0.708, P < .001). We propose that the results of the risk score assessment not only reveal changes in biomarkers during neurological recovery but also assist in enhancing current therapeutic strategies for comatose CA survivors.