Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Social network analysis of COVID-19 transmission in Karnataka, India
Ist Teil von
Epidemiology and infection, 2020-01, Vol.148, p.e230-e230, Article e230
Ort / Verlag
Cambridge, UK: Cambridge University Press
Erscheinungsjahr
2020
Quelle
MEDLINE
Beschreibungen/Notizen
We used social network analysis (SNA) to study the novel coronavirus (COVID-19) outbreak in Karnataka, India, and to assess the potential of SNA as a tool for outbreak monitoring and control. We analysed contact tracing data of 1147 COVID-19 positive cases (mean age 34.91 years, 61.99% aged 11–40, 742 males), anonymised and made public by the Karnataka government. Software tools, Cytoscape and Gephi, were used to create SNA graphics and determine network attributes of nodes (cases) and edges (directed links from source to target patients). Outdegree was 1–47 for 199 (17.35%) nodes, and betweenness, 0.5–87 for 89 (7.76%) nodes. Men had higher mean outdegree and women, higher mean betweenness. Delhi was the exogenous source of 17.44% cases. Bangalore city had the highest caseload in the state (229, 20%), but comparatively low cluster formation. Thirty-four (2.96%) ‘super-spreaders’ (outdegree ⩾ 5) caused 60% of the transmissions. Real-time social network visualisation can allow healthcare administrators to flag evolving hotspots and pinpoint key actors in transmission. Prioritising these areas and individuals for rigorous containment could help minimise resource outlay and potentially achieve a significant reduction in COVID-19 transmission.