Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 1576

Details

Autor(en) / Beteiligte
Titel
Fast and Facile Biodegradation of Polystyrene by the Gut Microbial Flora of Plesiophthalmus davidis Larvae
Ist Teil von
  • Applied and environmental microbiology, 2020-09, Vol.86 (18)
Ort / Verlag
United States: American Society for Microbiology
Erscheinungsjahr
2020
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • Polystyrene (PS), which accounts for a significant fraction of plastic wastes, is difficult to biodegrade due to its unique molecular structure. Therefore, biodegradation and chemical modification of PS are limited. In this study, we report PS biodegradation by the larvae of the darkling beetle (Coleoptera: Tenebrionidae). In 14 days, ingested 34.27 ± 4.04 mg of Styrofoam (PS foam) per larva and survived by feeding only on Styrofoam. Fourier transform infrared spectroscopy confirmed that the ingested Styrofoam was oxidized. Gel permeation chromatography analysis indicated the decrease in average molecular weight of the residual PS in the frass compared with the feed Styrofoam. When the extracted gut flora was cultured for 20 days with PS films, biofilm and cavities were observed by scanning electron microscopy and atomic force microscopy. X-ray photoelectron spectroscopy (XPS) studies revealed that C-O bonding was introduced into the biodegraded PS film. sp. strain WSW (KCTC 82146), which was isolated from the gut flora, also formed a biofilm and cavities on the PS film in 20 days, but its degradation was less prominent than the gut flora. XPS confirmed that C-O and C=O bonds were introduced into the biodegraded PS film by sp. WSW. Microbial community analysis revealed that was in the gut flora in significant amounts and increased sixfold when the larvae were fed Styrofoam for 2 weeks. This suggests that larvae and its gut bacteria could be used to chemically modify and rapidly degrade PS. PS is widely produced in the modern world, but it is robust against biodegradation. A few studies reported the biodegradation of PS, but most of them merely observed its weight loss; fewer were able to find its chemical modifications, which are rather direct evidence of biodegradation, by using limited organisms. Therefore, it is required to find an effective way to decompose PS using various kinds of organisms. Herein, we discovered a new PS-degrading insect species and bacterial strain, and we found that the genus that includes the PS-degrading bacterial strain occurs in significant amounts in the larval gut flora, and the proportion of this genus increased as the larvae were fed Styrofoam. Our research offers a wider selection of PS-degrading insects and the possibility of using a certain mixture of bacteria that resemble the gut flora of a PS-degrading insect to biodegrade PS, and thus could contribute to solving the global plastic crisis.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX