Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 57497

Details

Autor(en) / Beteiligte
Titel
Nucleation Inhibition of Huntingtin Protein (htt) by Polyproline PPII Helices: A Potential Interaction with the N‑Terminal α‑Helical Region of Htt
Ist Teil von
  • Biochemistry (Easton), 2020-02, Vol.59 (4), p.436-449
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2020
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • Huntington’s disease is a genetic neurodegenerative disorder characterized by the formation of amyloid fibrils of the huntingtin protein (htt). The 17-residue N-terminal region of htt (Nt17) has been implicated in the formation of early phase oligomeric species, which may be neurotoxic. Because tertiary interactions with a downstream (C-terminal) polyproline (polyP) region of htt may disrupt the formation of oligomers, which are precursors to fibrillar species, the effect of co-incubation of a region of htt with a 10-residue polyP peptide on oligomerization and fibrillization has been examined by atomic force microscopy. From multiple, time-course experiments, morphological changes in oligomeric species are observed for the protein/peptide mixture and compared with the protein alone. Additionally, an overall decrease in fibril formation is observed for the heterogeneous mixture. To consider potential sites of interaction between the Nt17 region and polyP, mixtures containing Nt17 and polyP peptides have been examined by ion mobility spectrometry and gas-phase hydrogen–deuterium exchange coupled with mass spectrometry. These data combined with molecular dynamics simulations suggest that the C-terminal region of Nt17 may be a primary point of contact. One interpretation of the results is that polyP may possibly regulate Nt17 by inducing a random coil region in the C-terminal portion of Nt17, thus decreasing the propensity to form the reactive amphipathic α-helix. A separate interpretation is that the residues important for helix–helix interactions are blocked by polyP association.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX