Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 520

Details

Autor(en) / Beteiligte
Titel
A Machine Learning Method for Detecting Autocorrelation of Evolutionary Rates in Large Phylogenies
Ist Teil von
  • Molecular biology and evolution, 2019-04, Vol.36 (4), p.811-824
Ort / Verlag
United States: Oxford University Press
Erscheinungsjahr
2019
Quelle
Oxford Journals 2020 Medicine
Beschreibungen/Notizen
  • New species arise from pre-existing species and inherit similar genomes and environments. This predicts greater similarity of the tempo of molecular evolution between direct ancestors and descendants, resulting in autocorrelation of evolutionary rates in the tree of life. Surprisingly, molecular sequence data have not confirmed this expectation, possibly because available methods lack the power to detect autocorrelated rates. Here, we present a machine learning method, CorrTest, to detect the presence of rate autocorrelation in large phylogenies. CorrTest is computationally efficient and performs better than the available state-of-the-art method. Application of CorrTest reveals extensive rate autocorrelation in DNA and amino acid sequence evolution of mammals, birds, insects, metazoans, plants, fungi, parasitic protozoans, and prokaryotes. Therefore, rate autocorrelation is a common phenomenon throughout the tree of life. These findings suggest concordance between molecular and nonmolecular evolutionary patterns, and they will foster unbiased and precise dating of the tree of life.
Sprache
Englisch
Identifikatoren
ISSN: 0737-4038
eISSN: 1537-1719
DOI: 10.1093/molbev/msz014
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6804408
Format
Schlagworte
Methods

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX