Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 32
Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (33), p.16204-16209
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Observation of methane filled hexagonal ice stable up to 150 GPa
Ist Teil von
  • Proceedings of the National Academy of Sciences - PNAS, 2019-08, Vol.116 (33), p.16204-16209
Ort / Verlag
United States: National Academy of Sciences
Erscheinungsjahr
2019
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Gas hydrates consist of hydrogen-bonded water frameworks enclosing guest gas molecules and have been the focus of intense research for almost 40 y, both for their fundamental role in the understanding of hydrophobic interactions and for gas storage and energy-related applications. The stable structure of methane hydrate above 2 GPa, where CH₄ molecules are located within H₂O or D₂O channels, is referred to as methane hydrate III (MH-III). The stability limit of MH-III and the existence of a new high-pressure phase above 40 to 50 GPa, although recently conjectured, remain unsolved to date. We report evidence for a further high-pressure, room-temperature phase of the CH₄–D₂O hydrate, based on Raman spectroscopy in diamond anvil cell and ab initio molecular dynamics simulations including nuclear quantum effects. Our results reveal that a methane hydrate IV (MH-IV) structure, where the D₂O network is isomorphic with ice Ih, forms at ∼40 GPa and remains stable up to 150 GPa at least. Our proposed MH-IV structure is fully consistent with previous unresolved X-ray diffraction patterns at 55 GPa [T. Tanaka et al., J. Chem. Phys. 139, 104701 (2013)]. The MH-III → MH-IV transition mechanism, as suggested by the simulations, is complex. The MH-IV structure, where methane molecules intercalate the tetrahedral network of hexagonal ice, represents the highest-pressure gas hydrate known up to now. Repulsive interactions between methane and water dominate at the very high pressure probed here and the tetrahedral topology outperforms other possible arrangements in terms of space filling.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX