Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 60

Details

Autor(en) / Beteiligte
Titel
Regulation of Hepatic Lipid Accumulation and Distribution by Agouti-Related Protein in Male Mice
Ist Teil von
  • Endocrinology (Philadelphia), 2018-06, Vol.159 (6), p.2408-2420
Ort / Verlag
United States: Endocrine Society
Erscheinungsjahr
2018
Quelle
Oxford Journals 2020 Medicine
Beschreibungen/Notizen
  • Proper regulation of energy metabolism requires neurons in the central nervous system to respond dynamically to signals that reflect the body's energy reserve, and one such signal is leptin. Agouti-related protein (AgRP) is a hypothalamic neuropeptide that is markedly upregulated in leptin deficiency, a condition that is associated with severe obesity, diabetes, and hepatic steatosis. Because deleting AgRP in mice does not alter energy balance, we sought to determine whether AgRP plays an indispensable role in regulating energy and hepatic lipid metabolism in the sensitized background of leptin deficiency. We generated male mice that are deficient for both leptin and AgRP [double-knockout (DKO)]. DKO mice and ob/ob littermates had similar body weights, food intake, energy expenditure, and plasma insulin levels, although DKO mice surprisingly developed heightened hyperglycemia with advancing age. Overall hepatic lipid content was reduced in young prediabetic DKO mice, but not in the older diabetic counterparts. Intriguingly, however, both young and older DKO mice had an altered zonal distribution of hepatic lipids with reduced periportal lipid deposition. Moreover, leptin stimulated, whereas AgRP inhibited, hepatic sympathetic activity. Ablating sympathetic nerves to the liver, which primarily innervate the portal regions, produced periportal lipid accumulation in wild-type mice. Collectively, our results highlight AgRP as a regulator of hepatic sympathetic activity and metabolic zonation.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX