Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 112

Details

Autor(en) / Beteiligte
Titel
Host Specificity and Sensitivity of Established and Novel Sewage-Associated Marker Genes in Human and Nonhuman Fecal Samples
Ist Teil von
  • Applied and environmental microbiology, 2019-07, Vol.85 (14)
Ort / Verlag
United States: American Society for Microbiology
Erscheinungsjahr
2019
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Microbial source tracking (MST) methods measure fecal contamination levels and identify possible sources using quantitative PCR (qPCR) that targets host-associated fecal microorganisms. To date, most established MST assays for human sources, especially bacterial markers, have shown some nonhuman host cross-reactions. Recently developed assays, such as the crAssphage CPQ_056, Lachno3, and BacV6-21, have more limited information on host sensitivity and host specificity for human or sewage sources, particularly in countries other than the United States. In this study, we rigorously evaluated six sewage-associated MST assays (i.e., HF183, human adenovirus [HAdV], human polyomavirus [HPyV], crAssphage CPQ_056, Lachno3, and BacV6-21) to show advantages and disadvantages of their applications for MST. A total of 29 human and 3 sewage samples and 360 nonhuman fecal samples across 14 hosts collected from a subtropical region of Australia were tested for marker host specificity, host sensitivity, and concentrations. All sewage samples were positive for all six marker genes tested in this study. Bacterial markers were more prevalent than viral markers in human feces. Testing against animal hosts showed human feces (or sewage)-associated marker gene specificity was HAdV (1.00) > HPyV (0.99) > crAssphage CPQ_056 (0.98) > HF183 (0.96) > Lachno3 (0.95) > BacV6-21 (0.90), with marker concentrations in some animal fecal samples being 3 to 5 orders of magnitude lower than those in sewage. When considering host specificity, sensitivity, and concentrations in source samples, the HF183, Lachno3, and crAssphage CPQ_056 tests were the most suitable assays in this study for sewage contamination tracking in subtropical waters of Australia. Large financial investments are required to remediate fecal contamination sources in waterways, and accurate results from field studies are crucial to build confidence in MST approaches. Host specificity and sensitivity are two main performance characteristics for consideration when choosing MST assays. Ongoing efforts for marker assay validation will improve interpretation of results and could shed light on patterns of occurrence in nontarget hosts that might explain the underlying drivers of cross-reaction of certain markers. For field applications, caution should be taken to choose appropriate MST marker genes and assays based on available host specificity and sensitivity data and background knowledge of the contaminating sources in the study area. Since many waterborne pathogens are viruses, employing both viral and bacterial markers in investigations could provide insight into contamination dynamics and ecological behavior in the environment. Therefore, combined usage of marker assays is recommended for more accurate and informative sewage contamination detection and fecal source resolution.
Sprache
Englisch
Identifikatoren
ISSN: 0099-2240
eISSN: 1098-5336
DOI: 10.1128/aem.00641-19
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6606881

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX