Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 37

Details

Autor(en) / Beteiligte
Titel
Quantum generative adversarial learning in a superconducting quantum circuit
Ist Teil von
  • Science advances, 2019-01, Vol.5 (1), p.eaav2761
Ort / Verlag
United States: American Association for the Advancement of Science
Erscheinungsjahr
2019
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Generative adversarial learning is one of the most exciting recent breakthroughs in machine learning. It has shown splendid performance in a variety of challenging tasks such as image and video generation. More recently, a quantum version of generative adversarial learning has been theoretically proposed and shown to have the potential of exhibiting an exponential advantage over its classical counterpart. Here, we report the first proof-of-principle experimental demonstration of quantum generative adversarial learning in a superconducting quantum circuit. We demonstrate that, after several rounds of adversarial learning, a quantum-state generator can be trained to replicate the statistics of the quantum data output from a quantum channel simulator, with a high fidelity (98.8% on average) so that the discriminator cannot distinguish between the true and the generated data. Our results pave the way for experimentally exploring the intriguing long-sought-after quantum advantages in machine learning tasks with noisy intermediate-scale quantum devices.
Sprache
Englisch
Identifikatoren
ISSN: 2375-2548
eISSN: 2375-2548
DOI: 10.1126/sciadv.aav2761
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6357722

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX