Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 183

Details

Autor(en) / Beteiligte
Titel
Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy
Ist Teil von
  • Scientific reports, 2018-11, Vol.8 (1), p.16444-8, Article 16444
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2018
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Precision or personalized cancer medicine is a clinical approach that strives to customize therapies based upon the genomic profiles of individual patient tumors. Machine learning (ML) is a computational method particularly suited to the establishment of predictive models of drug response based on genomic profiles of targeted cells. We report here on the application of our previously established open-source support vector machine (SVM)-based algorithm to predict the responses of 175 individual cancer patients to a variety of standard-of-care chemotherapeutic drugs from the gene-expression profiles (RNA-seq or microarray) of individual patient tumors. The models were found to predict patient responses with >80% accuracy. The high PPV of our algorithms across multiple drugs suggests a potential clinical utility of our approach, particularly with respect to the identification of promising second-line treatments for patients failing standard-of-care first-line therapies.
Sprache
Englisch
Identifikatoren
ISSN: 2045-2322
eISSN: 2045-2322
DOI: 10.1038/s41598-018-34753-5
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6219522

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX