Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 30857

Details

Autor(en) / Beteiligte
Titel
Pretreatment Identification of Head and Neck Cancer Nodal Metastasis and Extranodal Extension Using Deep Learning Neural Networks
Ist Teil von
  • Scientific reports, 2018-09, Vol.8 (1), p.14036-11, Article 14036
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2018
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Identification of nodal metastasis and tumor extranodal extension (ENE) is crucial for head and neck cancer management, but currently only can be diagnosed via postoperative pathology. Pretreatment, radiographic identification of ENE, in particular, has proven extremely difficult for clinicians, but would be greatly influential in guiding patient management. Here, we show that a deep learning convolutional neural network can be trained to identify nodal metastasis and ENE with excellent performance that surpasses what human clinicians have historically achieved. We trained a 3-dimensional convolutional neural network using a dataset of 2,875 CT-segmented lymph node samples with correlating pathology labels, cross-validated and fine-tuned on 124 samples, and conducted testing on a blinded test set of 131 samples. On the blinded test set, the model predicted ENE and nodal metastasis each with area under the receiver operating characteristic curve (AUC) of 0.91 (95%CI: 0.85–0.97). The model has the potential for use as a clinical decision-making tool to help guide head and neck cancer patient management.
Sprache
Englisch
Identifikatoren
ISSN: 2045-2322
eISSN: 2045-2322
DOI: 10.1038/s41598-018-32441-y
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6145900

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX