Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
New mosquito control strategies are vitally needed to address established arthropod-borne infectious diseases such as dengue and yellow fever and emerging diseases such as Zika and chikungunya, all of which are transmitted by the disease vector mosquito
Aedes aegypti
. In this investigation,
Saccharomyces cerevisiae
(baker’s yeast) was engineered to produce short hairpin RNAs (shRNAs) corresponding to the
Aedes aegypti
orthologs of
fasciculation and elongation protein zeta 2
(
fez2
) and
leukocyte receptor cluster
(
lrc
) member, two genes identified in a recent screen for
A
.
aegypti
larval lethal genes. Feeding
A
.
aegypti
with the engineered yeasts resulted in silenced target gene expression, disrupted neural development, and highly significant larval mortality. Larvicidal activities were retained following heat inactivation and drying of the yeast into tabular formulations that induced >95% mortality and were found to attract adult females to oviposit. These ready-to-use inactivated yeast interfering RNA tablets may one day facilitate the seamless integration of this new class of lure-and-kill species-specific biorational mosquito larvicides into integrated mosquito control programs.