Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
ABSTRACT
Purpose
To determine the influence of drug physicochemical properties on brain mitochondrial delivery of 20 drugs at physiological pH.
Methods
The delivery of 8 cationic drugs (beta-blockers), 6 neutral drugs (corticosteroids), and 6 anionic drugs (non-steroidal anti-inflammatory drugs, NSAIDs) to isolated rat brain mitochondria was determined with and without membrane depolarization. Multiple linear regression was used to determine whether lipophilicity (Log D), charge, polarizability, polar surface area (PSA), and molecular weight influence mitochondrial delivery.
Results
The Log D for beta-blockers, corticosteroids, and NSAIDs was in the range of −1.41 to 1.37, 0.72 to 2.97, and −0.98 to 2, respectively. The % mitochondrial uptake increased exponentially with an increase in Log D for each class of drugs, with the uptake at a given lipophilicity obeying the rank order cationic>anionic>neutral. Valinomycin reduced membrane potential and the delivery of positively charged propranolol and betaxolol. The best equation for the combined data set was Log % Uptake = 0.333 Log D + 0.157 Charge – 0.887 Log PSA + 2.032 (R
2
= 0.738).
Conclusions
Drug lipopohilicity, charge, and polar surface area and membrane potential influence mitochondrial drug delivery, with the uptake of positively charged, lipophilic molecules being the most efficient.