Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 4 von 11

Details

Autor(en) / Beteiligte
Titel
Physical Realization of a Supervised Learning System Built with Organic Memristive Synapses
Ist Teil von
  • Scientific reports, 2016-09, Vol.6 (1), p.31932-31932, Article 31932
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2016
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Multiple modern applications of electronics call for inexpensive chips that can perform complex operations on natural data with limited energy. A vision for accomplishing this is implementing hardware neural networks, which fuse computation and memory, with low cost organic electronics. A challenge, however, is the implementation of synapses (analog memories) composed of such materials. In this work, we introduce robust, fastly programmable, nonvolatile organic memristive nanodevices based on electrografted redox complexes that implement synapses thanks to a wide range of accessible intermediate conductivity states. We demonstrate experimentally an elementary neural network, capable of learning functions, which combines four pairs of organic memristors as synapses and conventional electronics as neurons. Our architecture is highly resilient to issues caused by imperfect devices. It tolerates inter-device variability and an adaptable learning rule offers immunity against asymmetries in device switching. Highly compliant with conventional fabrication processes, the system can be extended to larger computing systems capable of complex cognitive tasks, as demonstrated in complementary simulations.
Sprache
Englisch
Identifikatoren
ISSN: 2045-2322
eISSN: 2045-2322
DOI: 10.1038/srep31932
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5013285

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX