UNIVERSI
TÄ
TS-
BIBLIOTHEK
P
ADERBORN
Anmelden
Menü
Menü
Start
Hilfe
Blog
Weitere Dienste
Neuerwerbungslisten
Fachsystematik Bücher
Erwerbungsvorschlag
Bestellung aus dem Magazin
Fernleihe
Einstellungen
Sprache
Deutsch
Deutsch
Englisch
Farbschema
Hell
Dunkel
Automatisch
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist
gegebenenfalls
nur via VPN oder Shibboleth (DFN-AAI) möglich.
mehr Informationen...
Universitätsbibliothek
Katalog
Suche
Details
Zur Ergebnisliste
Ergebnis 26 von 173943
Datensatz exportieren als...
BibTeX
Methods to estimate the between-study variance and its uncertainty in meta-analysis
Research synthesis methods, 2016-03, Vol.7 (1), p.55-79
Veroniki, Areti Angeliki
Jackson, Dan
Viechtbauer, Wolfgang
Bender, Ralf
Bowden, Jack
Knapp, Guido
Kuss, Oliver
Higgins, Julian PT
Langan, Dean
Salanti, Georgia
2016
Volltextzugriff (PDF)
Details
Autor(en) / Beteiligte
Veroniki, Areti Angeliki
Jackson, Dan
Viechtbauer, Wolfgang
Bender, Ralf
Bowden, Jack
Knapp, Guido
Kuss, Oliver
Higgins, Julian PT
Langan, Dean
Salanti, Georgia
Titel
Methods to estimate the between-study variance and its uncertainty in meta-analysis
Ist Teil von
Research synthesis methods, 2016-03, Vol.7 (1), p.55-79
Ort / Verlag
England: Blackwell Publishing Ltd
Erscheinungsjahr
2016
Quelle
ERIC
Beschreibungen/Notizen
Meta‐analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between‐study variability, which is typically modelled using a between‐study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between‐study variance, has been long challenged. Our aim is to identify known methods for estimation of the between‐study variance and its corresponding uncertainty, and to summarise the simulation and empirical evidence that compares them. We identified 16 estimators for the between‐study variance, seven methods to calculate confidence intervals, and several comparative studies. Simulation studies suggest that for both dichotomous and continuous data the estimator proposed by Paule and Mandel and for continuous data the restricted maximum likelihood estimator are better alternatives to estimate the between‐study variance. Based on the scenarios and results presented in the published studies, we recommend the Q‐profile method and the alternative approach based on a ‘generalised Cochran between‐study variance statistic’ to compute corresponding confidence intervals around the resulting estimates. Our recommendations are based on a qualitative evaluation of the existing literature and expert consensus. Evidence‐based recommendations require an extensive simulation study where all methods would be compared under the same scenarios. © 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.
Sprache
Englisch
Identifikatoren
ISSN: 1759-2879
eISSN: 1759-2887
DOI: 10.1002/jrsm.1164
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4950030
Format
–
Schlagworte
Algorithms
,
Bayes Theorem
,
bias
,
Comparative Analysis
,
Computation
,
Computer Simulation
,
confidence interval
,
Confidence intervals
,
coverage probability
,
Data Interpretation, Statistical
,
heterogeneity
,
Humans
,
Likelihood Functions
,
Maximum Likelihood Statistics
,
mean squared error
,
Meta Analysis
,
Meta-Analysis as Topic
,
Methods
,
Models, Statistical
,
Neoplasms - drug therapy
,
Original
,
Qualitative Research
,
Regression Analysis
,
Reproducibility of Results
,
Research methodology
,
Research Reports
,
Simulation
,
Software
,
Statistical Analysis
,
Uncertainty
,
Variance analysis
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von
bX