Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. We establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior.
•Larval zebrafish escape from looming stimuli after a critical image size is reached•Population activity of neurons in the optic tectum encodes critical image size•Modeling predicts the critical role of characterized cell types in the retina and tectum•Motor output is conveyed via multimodal circuitry in the hindbrain
Dunn et al. characterize the parameters influencing visually evoked escape behavior in larval zebrafish. Via large-scale functional imaging, the authors identify the neural circuits underlying the behavior and provide a mechanistic model that incorporates newly classified neural response types.