Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Molecular signaling of angiogenesis begins within hours after initiation of a stroke and the following regulation of endothelial integrity mediated by growth factor receptors and vascular growth factors. Recent studies further provided insights into the coordinated patterns of post-stroke gene expressions and the relationships between neurodegenerative diseases and neural function recovery processes after a stroke.
Differential protein-protein interaction networks (PPINs) were constructed at 3 post-stroke time points, and proteins with a significant stroke relevance value (SRV) were discovered. Genes, including UBC, CUL3, APP, NEDD8, JUP, and SIRT7, showed high associations with time after a stroke, and Ingenuity Pathway Analysis results showed that these post-stroke time series-associated genes were related to molecular and cellular functions of cell death, cell survival, the cell cycle, cellular development, cellular movement, and cell-to-cell signaling and interactions. These biomarkers may be helpful for the early detection, diagnosis, and prognosis of ischemic stroke.
This is our first attempt to use our theory of a systems biology framework on strokes. We focused on 3 key post-stroke time points. We identified the network and corresponding network biomarkers for the 3 time points, further studies are needed to experimentally confirm the findings and compare them with the causes of ischemic stroke. Our findings showed that stroke-associated biomarker genes at different time points were significantly involved in cell cycle processing, including G2-M, G1-S and meiosis, which contributes to the current understanding of the etiology of stroke. We hope this work helps scientists reveal more hidden cellular mechanisms of stroke etiology and repair processes.