Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 8258

Details

Autor(en) / Beteiligte
Titel
Critical Role of Histone Turnover in Neuronal Transcription and Plasticity
Ist Teil von
  • Neuron (Cambridge, Mass.), 2015-07, Vol.87 (1), p.77-94
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2015
Link zum Volltext
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Turnover and exchange of nucleosomal histones and their variants, a process long believed to be static in post-replicative cells, remains largely unexplored in brain. Here, we describe a novel mechanistic role for HIRA (histone cell cycle regulator) and proteasomal degradation-associated histone dynamics in the regulation of activity-dependent transcription, synaptic connectivity, and behavior. We uncover a dramatic developmental profile of nucleosome occupancy across the lifespan of both rodents and humans, with the histone variant H3.3 accumulating to near-saturating levels throughout the neuronal genome by mid-adolescence. Despite such accumulation, H3.3-containing nucleosomes remain highly dynamic—in a modification-independent manner—to control neuronal- and glial-specific gene expression patterns throughout life. Manipulating H3.3 dynamics in both embryonic and adult neurons confirmed its essential role in neuronal plasticity and cognition. Our findings establish histone turnover as a critical and previously undocumented regulator of cell type-specific transcription and plasticity in mammalian brain. •H3.3 displays a unique saturating profile of nucleosome occupancy in postnatal brain•Histones turn over rapidly to promote activity-dependent neuronal transcription•Nucleosomal dynamics are required for synaptic development and behavioral plasticity•Histone turnover is critical for cell type-specific gene expression Maze et al. demonstrate a critical role for histone turnover in the regulation of neuronal transcription and synaptic development. Histone dynamics are essential for cognitive plasticity and represent a novel epigenetic mechanism with far-reaching implications for human neurobiology and disease.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX