Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions
Ist Teil von
Cell research, 2015-04, Vol.25 (4), p.429-444
Ort / Verlag
London: Nature Publishing Group UK
Erscheinungsjahr
2015
Quelle
EZB-FREE-00999 freely available EZB journals
Beschreibungen/Notizen
Cancer cells are known to undergo metabolic reprogramming to sustain survival and rapid proliferation, however, it remains to be fully elucidated how oncogenic lesions coordinate the metabolic switch under various stressed condi- tions. Here we show that deprivation of glucose or glutamine, two major nutrition sources for cancer cells, dramat- ically activated serine biosynthesis pathway (SSP) that was accompanied by elevated cMyc expression. We further identified that cMyc stimulated SSP activation by transcriptionally upregulating expression of multiple SSP enzymes. Moreover, we demonstrated that SSP activation facilitated by cMye led to elevated glutathione (GSH) production, cell cycle progression and nucleic acid synthesis, which are essential for cell survival and proliferation especially un- der nutrient-deprived conditions. We further uncovered that phosphoserine phosphatase (PSPH), the final rate-lim- iting enzyme of the SSP pathway, is critical for cMyc-driven cancer progression both in vitro and in vivo, and impor- tantly, aberrant expression of PSPH is highly correlated with mortality in hepatocellular carcinoma (HCC) patients, suggesting a potential causal relation between this cMyc-regulated enzyme, or SSP activation in general, and cancer development. Taken together, our results reveal that aberrant expression of cMyc leads to the enhanced SSP activa- tion, an essential part of metabolic switch, to facilitate cancer progression under nutrient-deprived conditions.