Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 33544

Details

Autor(en) / Beteiligte
Titel
Platelet-like Nanoparticles: Mimicking Shape, Flexibility, and Surface Biology of Platelets To Target Vascular Injuries
Ist Teil von
  • ACS nano, 2014-11, Vol.8 (11), p.11243-11253
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2014
Quelle
MEDLINE
Beschreibungen/Notizen
  • Targeted delivery of therapeutic and imaging agents in the vascular compartment represents a significant hurdle in using nanomedicine for treating hemorrhage, thrombosis, and atherosclerosis. While several types of nanoparticles have been developed to meet this goal, their utility is limited by poor circulation, limited margination, and minimal targeting. Platelets have an innate ability to marginate to the vascular wall and specifically interact with vascular injury sites. These platelet functions are mediated by their shape, flexibility, and complex surface interactions. Inspired by this, we report the design and evaluation of nanoparticles that exhibit platelet-like functions including vascular injury site-directed margination, site-specific adhesion, and amplification of injury site-specific aggregation. Our nanoparticles mimic four key attributes of platelets, (i) discoidal morphology, (ii) mechanical flexibility, (iii) biophysically and biochemically mediated aggregation, and (iv) heteromultivalent presentation of ligands that mediate adhesion to both von Willebrand Factor and collagen, as well as specific clustering to activated platelets. Platelet-like nanoparticles (PLNs) exhibit enhanced surface-binding compared to spherical and rigid discoidal counterparts and site-selective adhesive and platelet-aggregatory properties under physiological flow conditions in vitro. In vivo studies in a mouse model demonstrated that PLNs accumulate at the wound site and induce ∼65% reduction in bleeding time, effectively mimicking and improving the hemostatic functions of natural platelets. We show that both the biochemical and biophysical design parameters of PLNs are essential in mimicking platelets and their hemostatic functions. PLNs offer a nanoscale technology that integrates platelet-mimetic biophysical and biochemical properties for potential applications in injectable synthetic hemostats and vascularly targeted payload delivery.
Sprache
Englisch
Identifikatoren
ISSN: 1936-0851
eISSN: 1936-086X
DOI: 10.1021/nn503732m
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4246005

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX