Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations
Ist Teil von
Nature genetics, 2014-05, Vol.46 (5), p.451-456
Ort / Verlag
New York: Nature Publishing Group US
Erscheinungsjahr
2014
Quelle
MEDLINE
Beschreibungen/Notizen
Cynthia Hawkins, Oren Becher and colleagues report the identification of recurrent mutations in
ACVR1
in 20% of diffuse intrinsic pontine gliomas.
Diffuse intrinsic pontine glioma (DIPG) is a fatal brain cancer that arises in the brainstem of children, with no effective treatment and near 100% fatality. The failure of most therapies can be attributed to the delicate location of these tumors and to the selection of therapies on the basis of assumptions that DIPGs are molecularly similar to adult disease. Recent studies have unraveled the unique genetic makeup of this brain cancer, with nearly 80% found to harbor a p.Lys27Met histone H3.3 or p.Lys27Met histone H3.1 alteration. However, DIPGs are still thought of as one disease, with limited understanding of the genetic drivers of these tumors. To understand what drives DIPGs, we integrated whole-genome sequencing with methylation, expression and copy number profiling, discovering that DIPGs comprise three molecularly distinct subgroups (H3-K27M, silent and MYCN) and uncovering a new recurrent activating mutation affecting the activin receptor gene
ACVR1
in 20% of DIPGs. Mutations in
ACVR1
were constitutively activating, leading to SMAD phosphorylation and increased expression of the downstream activin signaling targets
ID1
and
ID2
. Our results highlight distinct molecular subgroups and novel therapeutic targets for this incurable pediatric cancer.