Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 656

Details

Autor(en) / Beteiligte
Titel
Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma
Ist Teil von
  • Neuro-oncology (Charlottesville, Va.), 2014-05, Vol.16 (5), p.671-685
Ort / Verlag
England: Oxford University Press
Erscheinungsjahr
2014
Quelle
Oxford Journals 2020 Medicine
Beschreibungen/Notizen
  • Ionizing irradiation is an effective treatment for malignant glioma (MG); however, a higher rate of recurrence with more aggressive phenotypes is a vital issue. Although epithelial-mesenchymal transition (EMT) is involved in irradiation-induced cancer progression, the role for such phenotypic transition in MG remains unknown. To investigate the mechanism of irradiation-dependent tumor progression in MG, we performed immunohistochemistry (IHC) and qRT-PCR using primary and recurrent MG specimens, MG cell lines, and primary culture cells of MG. siRNA technique was used for MG cell lines. In 22 cases of clinically recurrent MG, the expression of the mesenchymal markers vimentin and CD44 was found to be increased by IHC. In paired identical MG of 7 patients, the expression of collagen, MMPs, and YKL-40 were also elevated in the recurrent MGs, suggesting the The Cancer Genome Atlas-based mesenchymal subtype. Among EMT regulators, sustained elevation of Snail was observed in MG cells at 21 days after irradiation. Cells exhibited an upregulation of migration, invasion, numbers of focal adhesion, and MMP-2 production, and all of these mesenchymal features were abrogated by Snail knockdown. Intriguingly, phosphorylation of ERK1/2 and GSK-3β were increased after irradiation in a Snail-dependent manner, and TGF-β was elevated in both fibroblasts and macrophages but not in MG cells after irradiation. It was noteworthy that irradiated cells also expressed stemness features such as SOX2 expression and tumor-forming potential in vivo. We here propose a novel concept of glial-mesenchymal transition after irradiation in which the sustained Snail expression plays an essential role.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX