Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 220

Details

Autor(en) / Beteiligte
Titel
An informatics approach to analyzing the incidentalome
Ist Teil von
  • Genetics in medicine, 2013-01, Vol.15 (1), p.36-44
Ort / Verlag
New York: Nature Publishing Group US
Erscheinungsjahr
2013
Quelle
MEDLINE
Beschreibungen/Notizen
  • Purpose: Next-generation sequencing has transformed genetic research and is poised to revolutionize clinical diagnosis. However, the vast amount of data and inevitable discovery of incidental findings require novel analytic approaches. We therefore implemented for the first time a strategy that utilizes an a priori structured framework and a conservative threshold for selecting clinically relevant incidental findings. Methods: We categorized 2,016 genes linked with Mendelian diseases into “bins” based on clinical utility and validity, and used a computational algorithm to analyze 80 whole-genome sequences in order to explore the use of such an approach in a simulated real-world setting. Results: The algorithm effectively reduced the number of variants requiring human review and identified incidental variants with likely clinical relevance. Incorporation of the Human Gene Mutation Database improved the yield for missense mutations but also revealed that a substantial proportion of purported disease-causing mutations were misleading. Conclusion: This approach is adaptable to any clinically relevant bin structure, scalable to the demands of a clinical laboratory workflow, and flexible with respect to advances in genomics. We anticipate that application of this strategy will facilitate pretest informed consent, laboratory analysis, and posttest return of results in a clinical context. Genet Med 2013:15(1):36–44
Sprache
Englisch
Identifikatoren
ISSN: 1098-3600
eISSN: 1530-0366
DOI: 10.1038/gim.2012.112
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3538953

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX