Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
IL-10 regulates Il12b expression via histone deacetylation: implications for intestinal macrophage homeostasis
Ist Teil von
The Journal of immunology (1950), 2012-08, Vol.189 (4), p.1792-1799
Ort / Verlag
United States
Erscheinungsjahr
2012
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
To prevent excessive inflammatory responses to commensal microbes, intestinal macrophages, unlike their systemic counterparts, do not produce inflammatory cytokines in response to enteric bacteria. Consequently, loss of macrophage tolerance to the enteric microbiota plays a central role in the pathogenesis of inflammatory bowel diseases. Therefore, we examined whether the hyporesponsive phenotype of intestinal macrophages is programmed by prior exposure to the microbiota. IL-10, but not in vivo exposure to the microbiota, programs intestinal macrophage tolerance, because wild-type (WT) colonic macrophages from germ-free and specific pathogen-free (SPF)-derived mice produce IL-10, but not IL-12 p40, when activated with enteric bacteria. Basal and activated IL-10 expression is mediated through a MyD88-dependent pathway. Conversely, colonic macrophages from germ-free and SPF-derived colitis-prone Il10(-/-) mice demonstrated robust production of IL-12 p40. Next, mechanisms through which IL-10 inhibits Il12b expression were investigated. Although Il12b mRNA was transiently induced in LPS-activated WT bone marrow-derived macrophages (BMDMs), expression persisted in Il10(-/-) BMDMs. There were no differences in nucleosome remodeling, mRNA stability, NF-κB activation, or MAPK signaling to explain prolonged transcription of Il12b in Il10(-/-) BMDMs. However, acetylated histone H4 transiently associated with the Il12b promoter in WT BMDMs, whereas association of these factors was prolonged in Il10(-/-) BMDMs. Experiments using histone deacetylase (HDAC) inhibitors and HDAC3 short hairpin RNA indicate that HDAC3 is involved in histone deacetylation of the Il12b promoter by IL-10. These results suggest that histone deacetylation on the Il12b promoter by HDAC3 mediates homeostatic effects of IL-10 in macrophages.