Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 84

Details

Autor(en) / Beteiligte
Titel
Logic-Embedded Vectors for Intracellular Partitioning, Endosomal Escape, and Exocytosis of Nanoparticles
Ist Teil von
  • Small (Weinheim an der Bergstrasse, Germany), 2010-12, Vol.6 (23), p.2691-2700
Ort / Verlag
Weinheim: WILEY-VCH Verlag
Erscheinungsjahr
2010
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
  • A new generation of nanocarriers, logic‐embedded vectors (LEVs), is endowed with the ability to localize components at multiple intracellular sites, thus creating an opportunity for synergistic control of redundant or dual‐hit pathways. LEV encoding elements include size, shape, charge, and surface chemistry. In this study, LEVs consist of porous silicon nanocarriers, programmed for cellular uptake and trafficking along the endosomal pathway, and surface‐tailored iron oxide nanoparticles, programmed for endosomal sorting and partitioning of particles into unique cellular locations. In the presence of persistent endosomal localization of silicon nanocarriers, amine‐functionalized nanoparticles are sorted into multiple vesicular bodies that form novel membrane‐bound compartments compatible with cellular secretion, while chitosan‐coated nanoparticles escape from endosomes and enter the cytosol. Encapsulation within the porous silicon matrix protects these nanoparticle surface‐tailored properties, and enhances endosomal escape of chitosan‐coated nanoparticles. Thus, LEVs provide a mechanism for shielded transport of nanoparticles to the lesion, cellular manipulation at multiple levels, and a means for targeting both within and between cells. Logic‐embedded vectors (LEVs) are multiparticle drug‐delivery systems with the ability to localize components at multiple intracellular sites. LEVs consisting of porous silicon nanocarriers and iron oxide nanoparticles are internalized by phagocytosis and undergo intracellular partitioning to diverse intracellular locations, which include the cytosol and membrane‐bound compartments compatible with cellular secretion.
Sprache
Englisch
Identifikatoren
ISSN: 1613-6810, 1613-6829
eISSN: 1613-6829
DOI: 10.1002/smll.201000727
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2997879

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX