Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 2143
Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (48), p.20792-20797
2010

Details

Autor(en) / Beteiligte
Titel
Error-prone translesion synthesis mediates acquired chemoresistance
Ist Teil von
  • Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (48), p.20792-20797
Ort / Verlag
United States: National Academy of Sciences
Erscheinungsjahr
2010
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • The development of cancer drug resistance is a persistent clinical problem limiting the successful treatment of disseminated malignancies. However, the molecular mechanisms by which initially chemoresponsive tumors develop therapeutic resistance remain poorly understood. Error-prone translesional DNA synthesis (TLS) is known to underlie the mutagenic effects of numerous anticancer agents, but little is known as to whether mutation induced by this process is ultimately relevant to tumor drug resistance. Here, we use a tractable mouse model of B-cell lymphoma to interrogate the role of error-prone translesional DNA synthesis in chemotherapy-induced mutation and resistance to front-line chemotherapy. We find that suppression of Rev1, an essential TLS scaffold protein and dCMP transferase, inhibits both cisplatin- and cyclosphosphamide-induced mutagenesis. Additionally, by performing repeated cycles of tumor engraftment and treatment, we show that Rev1 plays a critical role in the development of acquired cyclophosphamide resistance. Thus, chemotherapy not only selects for drug-resistant tumor population but also directly promotes the TLS-mediated acquisition of resistance-causing mutations. These data provide an example of an alteration that prevents the acquisition of drug resistance in tumors in vivo. Because TLS also represents a critical mechanism of DNA synthesis in tumor cells following chemotherapy, these data suggest that TLS inhibition may have dual anticancer effects, sensitizing tumors to therapy as well as preventing the emergence of tumor chemoresistance.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX