Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 280224

Details

Autor(en) / Beteiligte
Titel
High-speed graphene transistors with a self-aligned nanowire gate
Ist Teil von
  • Nature (London), 2010-09, Vol.467 (7313), p.305-308
Ort / Verlag
London: Nature Publishing Group
Erscheinungsjahr
2010
Link zum Volltext
Quelle
EBSCOhost Psychology and Behavioral Sciences Collection
Beschreibungen/Notizen
  • Graphene has attracted considerable interest as a potential new electronic material. With its high carrier mobility, graphene is of particular interest for ultrahigh-speed radio-frequency electronics. However, conventional device fabrication processes cannot readily be applied to produce high-speed graphene transistors because they often introduce significant defects into the monolayer of carbon lattices and severely degrade the device performance. Here we report an approach to the fabrication of high-speed graphene transistors with a self-aligned nanowire gate to prevent such degradation. A Co2Si-Al2O3 core-shell nanowire is used as the gate, with the source and drain electrodes defined through a self-alignment process and the channel length defined by the nanowire diameter. The physical assembly of the nanowire gate preserves the high carrier mobility in graphene, and the self-alignment process ensures that the edges of the source, drain and gate electrodes are automatically and precisely positioned so that no overlapping or significant gaps exist between these electrodes, thus minimizing access resistance. It therefore allows for transistor performance not previously possible. Graphene transistors with a channel length as low as 140 nm have been fabricated with the highest scaled on-current (3.32 mA  m−1) and transconductance (1.27 mS  m−1) reported so far. Significantly, on-chip microwave measurements demonstrate that the self-aligned devices have a high intrinsic cut-off (transit) frequency of fT = 100-300 GHz, with the extrinsic fT (in the range of a few gigahertz) largely limited by parasitic pad capacitance. The reported intrinsic fT of the graphene transistors is comparable to that of the very best high-electron-mobility transistors with similar gate lengths.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX