Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 10809
Accounts of chemical research, 2010-02, Vol.43 (2), p.190-200
2010

Details

Autor(en) / Beteiligte
Titel
Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering
Ist Teil von
  • Accounts of chemical research, 2010-02, Vol.43 (2), p.190-200
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2010
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • Semiconductor nanocrystals are tiny light-emitting particles on the nanometer scale. Researchers have studied these particles intensely and have developed them for broad applications in solar energy conversion, optoelectronic devices, molecular and cellular imaging, and ultrasensitive detection. A major feature of semiconductor nanocrystals is the quantum confinement effect, which leads to spatial enclosure of the electronic charge carriers within the nanocrystal. Because of this effect, researchers can use the size and shape of these “artificial atoms” to widely and precisely tune the energy of discrete electronic energy states and optical transitions. As a result, researchers can tune the light emission from these particles throughout the ultraviolet, visible, near-infrared, and mid-infrared spectral ranges. These particles also span the transition between small molecules and bulk crystals, instilling novel optical properties such as carrier multiplication, single-particle blinking, and spectral diffusion. In addition, semiconductor nanocrystals provide a versatile building block for developing complex nanostructures such as superlattices and multimodal agents for molecular imaging and targeted therapy. In this Account, we discuss recent advances in the understanding of the atomic structure and optical properties of semiconductor nanocrystals. We also discuss new strategies for band gap and electronic wave function engineering to control the location of charge carriers. New methodologies such as alloying, doping, strain-tuning, and band-edge warping will likely play key roles in the further development of these particles for optoelectronic and biomedical applications.
Sprache
Englisch
Identifikatoren
ISSN: 0001-4842
eISSN: 1520-4898
DOI: 10.1021/ar9001069
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2858563

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX