Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 1501
Biophysical journal, 2003-05, Vol.84 (5), p.3257-3263
2003
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Support Vector Machines for Predicting Membrane Protein Types by Using Functional Domain Composition
Ist Teil von
  • Biophysical journal, 2003-05, Vol.84 (5), p.3257-3263
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2003
Quelle
MEDLINE
Beschreibungen/Notizen
  • Membrane proteins are generally classified into the following five types: 1), type I membrane protein; 2), type II membrane protein; 3), multipass transmembrane proteins; 4), lipid chain-anchored membrane proteins; and 5), GPI-anchored membrane proteins. In this article, based on the concept of using the functional domain composition to define a protein, the Support Vector Machine algorithm is developed for predicting the membrane protein type. High success rates are obtained by both the self-consistency and jackknife tests. The current approach, complemented with the powerful covariant discriminant algorithm based on the pseudo-amino acid composition that has incorporated quasi-sequence-order effect as recently proposed by K. C. Chou (2001), may become a very useful high-throughput tool in the area of bioinformatics and proteomics.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX