Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 23

Details

Autor(en) / Beteiligte
Titel
Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti3C2Tx MXene
Ist Teil von
  • Nano-micro letters, 2023-12, Vol.15 (1), p.225-225, Article 225
Ort / Verlag
Singapore: Springer Nature Singapore
Erscheinungsjahr
2023
Link zum Volltext
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Highlights Heterostructure engineering is proposed to construct CoTe 2 /ZnTe heterostructures with built-in electric field. Conductive and elastic Ti 3 C 2 T x MXene is introduced to improve the conductivity and alleviate the volume change of CoTe 2 /ZnTe upon cycling. The resulting CoTe 2 /ZnTe/Ti 3 C 2 T x (CZT) demonstrates outstanding rate capability (137.0 mAh g −1 at 10 A g −1 ) and cycling stability (175.3 mAh g −1 after 4000 cycles at 3.0 A g −1 ). Moreover, the CZT-based full cells demonstrate excellent energy density (220.2 Wh kg −1 ) and power density (837.2 W kg −1 ). Exploiting high-rate anode materials with fast K + diffusion is intriguing for the development of advanced potassium-ion batteries (KIBs) but remains unrealized. Here, heterostructure engineering is proposed to construct the dual transition metal tellurides (CoTe 2 /ZnTe), which are anchored onto two-dimensional (2D) Ti 3 C 2 T x MXene nanosheets. Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe 2 /ZnTe interfaces, improving K + diffusion and adsorption. In addition, the different work functions between CoTe 2 /ZnTe induce a robust built-in electric field at the CoTe 2 /ZnTe interface, providing a strong driving force to facilitate charge transport. Moreover, the conductive and elastic Ti 3 C 2 T x can effectively promote electrode conductivity and alleviate the volume change of CoTe 2 /ZnTe heterostructures upon cycling. Owing to these merits, the resulting CoTe 2 /ZnTe/Ti 3 C 2 T x (CZT) exhibit excellent rate capability (137.0 mAh g −1 at 10 A g −1 ) and cycling stability (175.3 mAh g −1 after 4000 cycles at 3.0 A g −1 , with a high capacity retention of 89.4%). More impressively, the CZT-based full cells demonstrate high energy density (220.2 Wh kg −1) and power density (837.2 W kg −1 ). This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX