Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 21 von 97

Details

Autor(en) / Beteiligte
Titel
Repeated measures of mammographic density and texture to evaluate prediction and risk of breast cancer: a systematic review of the methods used in the literature
Ist Teil von
  • Cancer causes & control, 2023-11, Vol.34 (11), p.939-948
Ort / Verlag
Cham: Springer International Publishing
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Purpose It may be important for women to have mammograms at different points in time to track changes in breast density, as fluctuations in breast density can affect breast cancer risk. This systematic review aimed to assess methods used to relate repeated mammographic images to breast cancer risk. Methods The databases including Medline (Ovid) 1946-, Embase.com 1947-, CINAHL Plus 1937-, Scopus 1823-, Cochrane Library (including CENTRAL), and Clinicaltrials.gov were searched through October 2021. Eligibility criteria included published articles in English describing the relationship of change in mammographic features with risk of breast cancer. Risk of bias was assessed using the Quality in Prognostic Studies tool. Results Twenty articles were included. The Breast Imaging Reporting and Data System and Cumulus were most commonly used for classifying mammographic density and automated assessment was used on more recent digital mammograms. Time between mammograms varied from 1 year to a median of 4.1, and only nine of the studies used more than two mammograms. Several studies showed that adding change of density or mammographic features improved model performance. Variation in risk of bias of studies was highest in prognostic factor measurement and study confounding. Conclusion This review provided an updated overview and revealed research gaps in assessment of the use of texture features, risk prediction, and AUC. We provide recommendations for future studies using repeated measure methods for mammogram images to improve risk classification and risk prediction for women to tailor screening and prevention strategies to level of risk.
Sprache
Englisch
Identifikatoren
ISSN: 0957-5243
eISSN: 1573-7225
DOI: 10.1007/s10552-023-01739-2
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10533570

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX