Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 2074

Details

Autor(en) / Beteiligte
Titel
Deep learning integrates histopathology and proteogenomics at a pan-cancer level
Ist Teil von
  • Cell reports. Medicine, 2023-09, Vol.4 (9), p.101173-101173, Article 101173
Ort / Verlag
United States: Cell Press
Erscheinungsjahr
2023
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs. normal (AUROC = 0.995) and tissue-of-origin (AUROC = 0.979). We further investigate predictive power on tasks not normally performed from H&E alone, including TP53 prediction and pathologic stage. Importantly, we describe predictive morphologies not previously utilized in a clinical setting. The incorporation of transcriptomics and proteomics identifies pathway-level signatures and cellular processes driving predictive histology features. Model generalizability and interpretability is confirmed using TCGA. We propose a classification system for these tasks, and suggest potential clinical applications for this integrated human and machine learning approach. A publicly available web-based platform implements these models.
Sprache
Englisch
Identifikatoren
ISSN: 2666-3791
eISSN: 2666-3791
DOI: 10.1016/j.xcrm.2023.101173
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10518635

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX