Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 134
ACS biomaterials science & engineering, 2023-07, Vol.9 (7), p.3935-3944
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
3D-Printed Architected Materials Inspired by Cubic Bravais Lattices
Ist Teil von
  • ACS biomaterials science & engineering, 2023-07, Vol.9 (7), p.3935-3944
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2023
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Learning from Nature and leveraging 3D printing, mechanical testing, and numerical modeling, this study aims to provide a deeper understanding of the structure–property relationship of crystal-lattice-inspired materials, starting from the study of single unit cells inspired by the cubic Bravais crystal lattices. In particular, here we study the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) lattices. Mechanical testing of 3D-printed structures is used to investigate the influence of different printing parameters. Numerical models, validated based on experimental testing carried out on single unit cells and embedding manufacturing-induced defects, are used to derive the scaling laws for each studied topology, thus providing guidelines for materials selection and design, and the basis for future homogenization and optimization studies. We observe no clear effect of the layer thickness on the mechanical properties of both bulk material and lattice structures. Instead, the printing direction effect, negligible in solid samples, becomes relevant in lattice structures, yielding different stiffnesses of struts and nodes. This phenomenon is accounted for in the proposed simulation framework. The numerical models of large arrays, used to define the scaling laws, suggest that the chosen topologies have a mainly stretching-dominated behaviora hallmark of structurally efficient structureswhere the modulus scales linearly with the relative density. By looking ahead, mimicking the characteristic microscale structure of crystalline materials will allow replicating the typical behavior of crystals at a larger scale, combining the hardening traits of metallurgy with the characteristic behavior of polymers and the advantage of lightweight architected structures, leading to novel materials with multiple functions.
Sprache
Englisch
Identifikatoren
ISSN: 2373-9878
eISSN: 2373-9878
DOI: 10.1021/acsbiomaterials.0c01708
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10336745
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX