Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 8
Bioinformatics (Oxford, England), 2023-06, Vol.39 (Supplement_1), p.i504-i512
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Gemini: memory-efficient integration of hundreds of gene networks with high-order pooling
Ist Teil von
  • Bioinformatics (Oxford, England), 2023-06, Vol.39 (Supplement_1), p.i504-i512
Ort / Verlag
England: Oxford University Press
Erscheinungsjahr
2023
Quelle
MEDLINE
Beschreibungen/Notizen
  • Abstract Motivation The exponential growth of genomic sequencing data has created ever-expanding repositories of gene networks. Unsupervised network integration methods are critical to learn informative representations for each gene, which are later used as features for downstream applications. However, these network integration methods must be scalable to account for the increasing number of networks and robust to an uneven distribution of network types within hundreds of gene networks. Results To address these needs, we present Gemini, a novel network integration method that uses memory-efficient high-order pooling to represent and weight each network according to its uniqueness. Gemini then mitigates the uneven network distribution through mixing up existing networks to create many new networks. We find that Gemini leads to more than a 10% improvement in F1 score, 15% improvement in micro-AUPRC, and 63% improvement in macro-AUPRC for human protein function prediction by integrating hundreds of networks from BioGRID, and that Gemini’s performance significantly improves when more networks are added to the input network collection, while Mashup and BIONIC embeddings’ performance deteriorates. Gemini thereby enables memory-efficient and informative network integration for large gene networks and can be used to massively integrate and analyze networks in other domains. Availability and implementation Gemini can be accessed at: https://github.com/MinxZ/Gemini.
Sprache
Englisch
Identifikatoren
ISSN: 1367-4803
eISSN: 1367-4811
DOI: 10.1093/bioinformatics/btad247
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10311345

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX