Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Hoboken: Wiley Subscription Services, Inc., A Wiley Company
Erscheinungsjahr
1996
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
Acute liver injury is associated with a high rate of infectious and septic complications. Most of these infections are produced by gram negative enteric bacteria. We evaluated bacterial translocation, intestinal permeability, blood flow, portal pressure, and intestinal microflora after induction of liver injury and 70% liver resection in the rat. The rate of translocation to both portal and arterial blood was 100% at 24 hours and 50% at 48 hours after liver resection compared with 83% to portal vein and 50% to aortic blood at both time points after acute liver injury. Translocation to intraabdominal organs (liver, spleen, and mesenteric lymph nodes) was 100% in both groups at both 24 and 48 hours. The rate of translocation increased after liver injury at 48 hours with progression of the liver injury but was decreased in the 70% liver resection group with improvement of liver function. “Total aerobic” and “total anaerobic” bacterial counts in small intestine and cecum were not affected. Pulmonary, distal small intestine, and cecal blood flow were decreased in both groups, whereas blood flow in the proximal small intestine was unaffected. Portal pressure and flow were increased after 70% liver resection, but they were decreased in acute liver injury. After acute liver injury, permeability of both distal small intestine and cecum increased, but after liver resection only cecal permeability increased. The results of this experiment show that bacterial translocation occurs in experimental acute liver injury and that its dynamic, pattern and fate are different from that observed after liver resection, which is a reversible surgical model of liver insufficiency.