Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
A Gauss–Newton method for iterative optimization of memory kernels for generalized Langevin thermostats in coarse-grained molecular dynamics simulations
Ist Teil von
  • The Journal of chemical physics, 2024-05, Vol.160 (20)
Ort / Verlag
United States: American Institute of Physics
Erscheinungsjahr
2024
Quelle
American Institute of Physics
Beschreibungen/Notizen
  • In molecular dynamics simulations, dynamically consistent coarse-grained (CG) models commonly use stochastic thermostats to model friction and fluctuations that are lost in a CG description. While Markovian, i.e., time-local, formulations of such thermostats allow for an accurate representation of diffusivities/long-time dynamics, a correct description of the dynamics on all time scales generally requires non-Markovian, i.e., non-time-local, thermostats. These thermostats typically take the form of a Generalized Langevin Equation (GLE) determined by a memory kernel. In this work, we use a Markovian embedded formulation of a position-independent GLE thermostat acting independently on each CG degree of freedom. Extracting the memory kernel of this CG model from atomistic reference data requires several approximations. Therefore, this task is best understood as an inverse problem. While our recently proposed approximate Newton scheme allows for the iterative optimization of memory kernels (IOMK), Markovian embedding remained potentially error-prone and computationally expensive. In this work, we present an IOMK-Gauss–Newton scheme (IOMK-GN) based on IOMK that allows for the direct parameterization of a Markovian embedded model.
Sprache
Englisch
Identifikatoren
ISSN: 0021-9606
eISSN: 1089-7690
DOI: 10.1063/5.0203832
Titel-ID: cdi_pubmed_primary_38804493

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX