Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 156

Details

Autor(en) / Beteiligte
Titel
Benefits of intratracheal and extrathoracic high-frequency percussive ventilation in a model of capnoperitoneum
Ist Teil von
  • Journal of applied physiology (1985), 2024-04, Vol.136 (4), p.928
Ort / Verlag
United States
Erscheinungsjahr
2024
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • Abdominal inflation with CO is used to facilitate laparoscopic surgeries, however, providing adequate mechanical ventilation in this scenario is of major importance during anesthesia management. We characterized high-frequency percussive ventilation (HFPV) in protecting from the gas exchange and respiratory mechanical impairments during capnoperitoneum. In addition, we aimed to assess the difference between conventional pressure-controlled mechanical ventilation (CMV) and HFPV modalities generating the high-frequency signal intratracheally (HFPVi) or extrathoracally (HFPVe). Anesthetized rabbits ( = 16) were mechanically ventilated by random sequences of CMV, HFPVi, and HFPVe. The ventilator superimposed the conventional waveform with two high-frequency signals (5 Hz and 10 Hz) during intratracheal HFPV (HFPVi) and HFPV with extrathoracic application of oscillatory signals through a sealed chest cuirass (HFPVe). Lung oxygenation index ([Formula: see text]/[Formula: see text]), arterial partial pressure of carbon dioxide ([Formula: see text]), intrapulmonary shunt (Qs/Qt), and respiratory mechanics were assessed before abdominal inflation, during capnoperitoneum, and after abdominal deflation. Compared with CMV, HFPVi with additional 5-Hz oscillations during capnoperitoneum resulted in higher [Formula: see text]/[Formula: see text], lower [Formula: see text], and decreased Qs/Qt. These improvements were smaller but remained significant during HFPVi with 10 Hz and HFPVe with either 5 or 10 Hz. The ventilation modes did not protect against capnoperitoneum-induced deteriorations in respiratory tissue mechanics. These findings suggest that high-frequency oscillations combined with conventional pressure-controlled ventilation improved lung oxygenation and CO removal in a model of capnoperitoneum. Compared with extrathoracic pressure oscillations, intratracheal generation of oscillatory pressure bursts appeared more effective. These findings may contribute to the optimization of mechanical ventilation during laparoscopic surgery. The present study examines an alternative and innovative mechanical ventilation modality in improving oxygen delivery, CO clearance, and respiratory mechanical abnormalities in a clinically relevant experimental model of capnoperitoneum. Our data reveal that high-frequency oscillations combined with conventional ventilation improve gas exchange, with intratracheal oscillations being more effective than extrathoracic oscillations in this clinically relevant translational model.
Sprache
Englisch
Identifikatoren
eISSN: 1522-1601
DOI: 10.1152/japplphysiol.00881.2023
Titel-ID: cdi_pubmed_primary_38420682

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX