UNIVERSI
TÄ
TS-
BIBLIOTHEK
P
ADERBORN
Anmelden
Menü
Menü
Start
Hilfe
Blog
Weitere Dienste
Neuerwerbungslisten
Fachsystematik Bücher
Erwerbungsvorschlag
Bestellung aus dem Magazin
Fernleihe
Einstellungen
Sprache
Deutsch
Deutsch
Englisch
Farbschema
Hell
Dunkel
Automatisch
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist
gegebenenfalls
nur via VPN oder Shibboleth (DFN-AAI) möglich.
mehr Informationen...
Universitätsbibliothek
Katalog
Suche
Details
Zur Ergebnisliste
Ergebnis 4 von 30
Datensatz exportieren als...
BibTeX
Sensor-Based Quantification of Peanut Disease Defoliation Using an Unmanned Aircraft System and Multispectral Imagery
Plant disease, 2024-02, Vol.108 (2), p.416-425
Barocco, Rebecca L.
Clohessy, James W.
O’Brien, G. Kelly
Dufault, Nicholas S.
Anco, Daniel J.
Small, Ian M.
2024
Volltextzugriff (PDF)
Details
Autor(en) / Beteiligte
Barocco, Rebecca L.
Clohessy, James W.
O’Brien, G. Kelly
Dufault, Nicholas S.
Anco, Daniel J.
Small, Ian M.
Titel
Sensor-Based Quantification of Peanut Disease Defoliation Using an Unmanned Aircraft System and Multispectral Imagery
Ist Teil von
Plant disease, 2024-02, Vol.108 (2), p.416-425
Erscheinungsjahr
2024
Beschreibungen/Notizen
Early leaf spot (Passalora arachidicola) and late leaf spot (Nothopassalora personata) are two of the most economically important foliar fungal diseases of peanut, often requiring seven to eight fungicide applications to protect against defoliation and yield loss. Rust (Puccinia arachidis) may also cause significant defoliation depending on season and location. Sensor technologies are increasingly being utilized to objectively monitor plant disease epidemics for research and supporting integrated management decisions. This study aimed to develop an algorithm to quantify peanut disease defoliation using multispectral imagery captured by an unmanned aircraft system. The algorithm combined the Green Normalized Difference Vegetation Index and the Modified Soil-Adjusted Vegetation Index and included calibration to site-specific peak canopy growth. Beta regression was used to train a model for percent net defoliation with observed visual estimations of the variety ‘GA-06G’ (0 to 95%) as the target and imagery as the predictor (train: pseudo-R 2 = 0.71, test k-fold cross-validation: R 2 = 0.84 and RMSE = 4.0%). The model performed well on new data from two field trials not included in model training that compared 25 (R 2 = 0.79, RMSE = 3.7%) and seven (R 2 = 0.87, RMSE = 9.4%) fungicide programs. This objective method of assessing mid-to-late season disease severity can be used to assist growers with harvest decisions and researchers with reproducible assessment of field experiments. This model will be integrated into future work with proximal ground sensors for pathogen identification and early season disease detection. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
Sprache
Englisch
Identifikatoren
ISSN: 0191-2917
eISSN: 1943-7692
DOI: 10.1094/PDIS-05-23-0847-RE
Titel-ID: cdi_crossref_primary_10_1094_PDIS_05_23_0847_RE
Format
–
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von
bX