Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Annual review of biomedical data science, 2023-08, Vol.6 (1), p.173-189
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
An Overview of Deep Generative Models in Functional and Evolutionary Genomics
Ist Teil von
  • Annual review of biomedical data science, 2023-08, Vol.6 (1), p.173-189
Ort / Verlag
United States
Erscheinungsjahr
2023
Quelle
MEDLINE
Beschreibungen/Notizen
  • Following the widespread use of deep learning for genomics, deep generative modeling is also becoming a viable methodology for the broad field. Deep generative models (DGMs) can learn the complex structure of genomic data and allow researchers to generate novel genomic instances that retain the real characteristics of the original dataset. Aside from data generation, DGMs can also be used for dimensionality reduction by mapping the data space to a latent space, as well as for prediction tasks via exploitation of this learned mapping or supervised/semi-supervised DGM designs. In this review, we briefly introduce generative modeling and two currently prevailing architectures, we present conceptual applications along with notable examples in functional and evolutionary genomics, and we provide our perspective on potential challenges and future directions.
Sprache
Englisch
Identifikatoren
ISSN: 2574-3414
eISSN: 2574-3414
DOI: 10.1146/annurev-biodatasci-020722-115651
Titel-ID: cdi_pubmed_primary_37137168

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX