Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 56
IEEE transactions on pattern analysis and machine intelligence, 2023-03, Vol.45 (3), p.3904-3917
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Video Joint Modelling Based on Hierarchical Transformer for Co-Summarization
Ist Teil von
  • IEEE transactions on pattern analysis and machine intelligence, 2023-03, Vol.45 (3), p.3904-3917
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2023
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Video summarization aims to automatically generate a summary (storyboard or video skim) of a video, which can facilitate large-scale video retrieval and browsing. Most of the existing methods perform video summarization on individual videos, which neglects the correlations among similar videos. Such correlations, however, are also informative for video understanding and video summarization. To address this limitation, we propose V ideo J oint M odelling based on H ierarchical T ransformer ( VJMHT ) for co-summarization, which takes into consideration the semantic dependencies across videos. Specifically, VJMHT consists of two layers of Transformer: the first layer extracts semantic representation from individual shots of similar videos, while the second layer performs shot-level video joint modelling to aggregate cross-video semantic information. By this means, complete cross-video high-level patterns are explicitly modelled and learned for the summarization of individual videos. Moreover, Transformer-based video representation reconstruction is introduced to maximize the high-level similarity between the summary and the original video. Extensive experiments are conducted to verify the effectiveness of the proposed modules and the superiority of VJMHT in terms of F-measure and rank-based evaluation.
Sprache
Englisch
Identifikatoren
ISSN: 0162-8828
eISSN: 1939-3539, 2160-9292
DOI: 10.1109/TPAMI.2022.3186506
Titel-ID: cdi_pubmed_primary_35759594

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX