Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 20 von 525

Details

Autor(en) / Beteiligte
Titel
Novel technical and privacy-preserving technology for artificial intelligence in ophthalmology
Ist Teil von
  • Current opinion in ophthalmology, 2022-05, Vol.33 (3), p.174-187
Erscheinungsjahr
2022
Beschreibungen/Notizen
  • Purpose of review The application of artificial intelligence (AI) in medicine and ophthalmology has experienced exponential breakthroughs in recent years in diagnosis, prognosis, and aiding clinical decision-making. The use of digital data has also heralded the need for privacy-preserving technology to protect patient confidentiality and to guard against threats such as adversarial attacks. Hence, this review aims to outline novel AI-based systems for ophthalmology use, privacy-preserving measures, potential challenges, and future directions of each. Recent findings Several key AI algorithms used to improve disease detection and outcomes include: Data-driven, imagedriven, natural language processing (NLP)-driven, genomics-driven, and multimodality algorithms. However, deep learning systems are susceptible to adversarial attacks, and use of data for training models is associated with privacy concerns. Several data protection methods address these concerns in the form of blockchain technology, federated learning, and generative adversarial networks. Summary AI-applications have vast potential to meet many eyecare needs, consequently reducing burden on scarce healthcare resources. A pertinent challenge would be to maintain data privacy and confidentiality while supporting AI endeavors, where data protection methods would need to rapidly evolve with AI technology needs. Ultimately, for AI to succeed in medicine and ophthalmology, a balance would need to be found between innovation and privacy.
Sprache
Englisch
Identifikatoren
ISSN: 1040-8738
eISSN: 1531-7021
DOI: 10.1097/ICU.0000000000000846
Titel-ID: cdi_crossref_primary_10_1097_ICU_0000000000000846
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX